

[Bhat, 5(4): April 2018] ISSN 2348 – 8034
 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

223

GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES

SOFTWARE COST ESTIMATION USING MODEL BASED TECHNIQUES: AN

OVERVIEW
Javaid Iqbal Bhat*1 & Zahid Hussain Wani2

*1Assistant Professor, Department of Computer Science, Islamic University of Science & Technology,

Kashmir, INDIA
2Assistant Professor, Department of Computer Science, Islamic University of Science & Technology,

Kashmir, INDIA

ABSTRACT
Software cost estimation is the forecasting of development effort and development time needed to develop a software

project. It is considered to be the primary step of software development process and at the same time considered to be

the key task as accurate assessments of growth of the current project, its delivery exactness and its cost control can

only be achieved once calculated estimation is accurate. And at broader perspective an accurate estimation of a

currently developing software project will result in landing the organization in a better schedule of its futuristic

software projects too. With due above reason, software effort estimation has received a considerable amount of

attention of many researchers for past so many decades. And accordingly, a good number of software cost estimation

techniques from last so many decades have been proposed which differ from model based techniques, also called as

algorithmic techniques to Non algorithmic to Data mining and to metaheuristics based. Besides all these, a varying

range of artificial neural network based models along with their hybrids have also been developed. In this research

study, a thorough review of model based techniques has been carried out for the purpose of getting details vis-à-vis

strengths and weaknesses in these model based software cost estimation techniques.

Keywords: Algorithmic Techniques, Model Based Techniques, Software Cost Estimation.

I. INTRODUCTION

Software cost estimation is the summation of predictions of both building effort and calendar time used to develop a

software project. The building effort includes the summation of working hours and the total of workers included in

the process of soft project development. Just from the inception of software project development, organizations of this

nature came across to the problem of poor estimations of development effort and development time of software

projects. A good reason for this was and which is persistent even this time is the availability of vague information

about the software project to be developed at the time of its estimation process. A better estimate of software product

is the only thing that can let any software development project manager to evaluate the project progress, gives him /

her good track of potential cost control and accuracy in delivery time. This in widespread, however, gives the

organization a better insight of resource utilization and consequently will land the organization in a better schedule of

its futuristic projects. For this purpose, a good number of software cost estimation techniques from last so many

decades have been proposed which differ from algorithmic [1] [2] to Non algorithmic to Data mining and to

metaheuristics algorithmic based, but unfortunately non among these satisfy the acceptance standard of accuracy in

estimation of software development projects. However, a varying range of artificial neural network based models

along with their hybrids have also been developed and have shown improvements in the said. The most commonly

used method for predicting software development effort as the case with COCOMO [1] [3] [4] are based on linear-

least-squares regression. Being extreme susceptible to local variations in data points [5], the model have failed in

dealing with implied Non-linearities and interactions between the characteristics of the project and effort [6].

Moreover, software cost estimation models if yield estimates with 25% of mean relative error to the actual and if

follows for at least 75% of the time, are believed to be in acceptable accuracy. However, there remains an open space

for developing effort estimation models with better predictive accuracy [7] too.

[Bhat, 5(4): April 2018] ISSN 2348 – 8034
 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

224

II. MODEL BASED TECHNIQUES

In model-based techniques, inorder to determine estimation of cost interms of effort in person months and calendar

time of any software project to be developed, a mathematical model is used containing some cost factors to decide

this estimation. The functionality of the mathematical model is usually dictated by the concept and testing of the

mathematical models made for estimation of the currently going software project. However, in most of the cases, these

models also want their calibration with past data from historical projects.

The techniques of this kind are impartial and never get unfair by human factor. These techniques are iterative and help

in adding sensitivity on the estimates of software to be developed. Moreover, once attuned with quality data from past

similar projects, these models provide accurate results.

However, in contrast to above, model based techniques are not able to work in well once exposed to special conditions

like when exposing them to poor quality of input data. Moreover, as these models are standardized using data from

history projects, which cannot be certain for such models about how much these models prove the accuracy.

In the coming subsections, three famous model-based techniques are discussed in detail. These include Putnam model,

also called as Software Life-cycle Model (SLIM), Constructive Cost Model, and Function Point Analysis. Some other

model based techniques like Estimacs like [8] Checkpoint [9], SEER-SEM [10] and Price-S [11] are also found in the

literature.

Putnam’s Model

This model was given in 1970s by Larry Putnam [12]. In this model, the Putnam uses a Rayleign curve function to

define estimates of both effort and time needed to complete a precise sized software development project. Software

equation is the dominant share of Putnam's model and is given as:

𝑆 = 𝐸 × (𝐸𝑓𝑓𝑜𝑟𝑡)
1

3⁄ 𝑥𝑑
4

3⁄ (1)

, where ‘xd’ represents the delivery time of software to be developed in years, ‘E’ defines the environmental factor

and reveals the capability of software development. ‘S’ representing the size is the actual source lines of code (SLOC)

and include altered as well as new coding lines. These coding lines are counted while excluding blank and comment

lines. ‘Effort’ represents the total effort in person-years applied to the software project. Another significant

understanding given by Putnam includes the following:

𝐸𝑓𝑓𝑜𝑟𝑡 = 𝑦0 × 𝑡𝑑3 (2)

, where ‘y0’ represents a manpower build-up and varies from 8 to 27 software projects defining from entirely new to

rebuilt softwares respectively. The softwares to be developed from the scratch, with known size and have to interact

with other systems for which they need an interface will be having highest randomness and will take longer time to

develop. Whereas in-case of reengineering of an existing software by doing its modification will be having very less

entropy associated with them as a good share of the modules interms of code and logic have previously been

developed. Thus such kind of softwares developments will need less time to develop too. On combination of the above

two mathematical models represented by (1) and (2), a third model can be developed and is as represented as:

𝐸𝑓𝑓𝑜𝑟𝑡 = (𝑦0

4
7⁄

 × 𝐸
−9

7⁄) × 𝑆
9

7⁄

and

𝑥𝑑 = (𝑦0

−1
7⁄

 × 𝐸
−3

7⁄) × 𝑆
9

7⁄

The factor ‘E’ commonly known as environmental factor can be substituted with another factor ‘B’, called as scaling

factor.

[Bhat, 5(4): April 2018] ISSN 2348 – 8034
 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

225

Where scaling factor represents a function of project size and productivity of process represents the capability of a

specific software company inorder to develop any software of any specific defect rate and known size. Moreover by

using Putnam’s Model, estimation of software development effort can be plotted as shown in below figure 1 to be the

function of time. In this figure, various points on sideways of the curve signify total effort as estimated and completed

at any particular time. From the below graph, it is clear that the curves depict that once a project enters into its extension

with respect to the completion, the total effort decreases correspondingly. This feature of Putnam’s model is

considered to be its unique one.

Figure 1: Time Function in Putnam Model with respect to Software Development Effort

The Putnam model can be adjusted with some adjustment questions if there exists non availability of data from

completed projects of past. So in conclusion, simplicity interms of calibration of this model with history data becomes

its significant property.

Function Point Analysis

This model was developed by Albrecht [13] at IBM as a way to measure the amount of functionality in a system. They

are derived from the requirements. Unlike lines of code, which capture the size of an actual product, function points

do not relate to something physical but, rather, to something logical that can be assessed quantitatively. As shown in

Figure 3.2, the function-point metric is calculated in two steps. First, a table like Table 1, which captures both data

and transaction information, is used to calculate an initial function point count.

[Bhat, 5(4): April 2018] ISSN 2348 – 8034
 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

226

Figure 2: Transformation of Requirements into Function or Feature Points

Table 1: Initial Function-Point Count

Input Type COUNT

Simple Average Complex

Number of External Inputs 3 4 6

Number of External Outputs 4 5 7

Number of External Queries 3 4 6

Number of Internal Logical Files 7 10 15

Number of External Interface Files 5 7 10

For each of the row’s count in column second is simply multiplied by a suitable weight as given in column 3, column

4, and column 5 to produce a numerical value that represents the mandatory quantity of functionality backed by that

row. These five numbers (weighted) are later summed to produce an “unadjusted function point” count.

In second step adjustment of initial count is done by using features that let the project to be either extra or less

challenging than a typical one. The project is next categorised by making use of a six-stage scale with no influence

represented with a weight of 0, incidental represented with a weight of 1, moderate represented with a weight of 2,

average represented with a weight of 3, significant represented with a weight of 4 and essential represented with

weight of 5 inorder to answer every question as given below in a set of 14 questions:

1. Whether the system needs reliable recovery and backup?

2. Does the system require data communications?

3. Are there processing functions distributed?

4. Is performance needed to be critical?

5. Is there any possibility of the system run in under heavily loaded operational environment?

6. Does the system need on-line data entry?

7. Does the data entry, if on-line, need the input transaction to be developed over many operations or screens?

8. Is there online Updation of master files?

9. Are the files, inquiries, inputs and outputs to be complex?

10. Whether the internal processing complex?

11. Whether code is reusable?

12. Does installation and conversion to be part of design?

[Bhat, 5(4): April 2018] ISSN 2348 – 8034
 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

227

13. Whether the system made for different organizations with several installations?

14. Whether the application is made to simplify variation and user-friendliness by the user?

The weights are next applied to unadjusted function-point total to produce an adjusted function-point count.

Albrecht and Gaffney in 1983 [14] interpreted function points to number of code lines for making their use in software

cost estimation and software schedule estimation models.

Later in 1986, function points at Software Productivity Research were enhanced by Capers Jones [15] and named as

feature points. Software Productivity Research feature points augment one more algorithmic parameter to the existing

five function-point parameters.

Although function and feature points find their greater use in providing size estimate in a schedule-estimation method,

however, they are don’t find any importance in determining the project’s status. In other words, we can say that it is

not genuine to say that a certain fraction of the system is done if that fraction of function points has been completed

with respect to its coding, as extra effort is required to integrate together all the functions once completed.

Constructive Cost Model

A research study was carried out by Barry Boehm in 1970 on 63 TRW Aerospace software projects which later in

1981 turned into one of the famous algorithmic model [1] called as Constructive Cost Model and COCOMO 81 for

short. This model fits best to the software development projects developed under the base of waterfall model and

developed using Common business oriented and assembly like languages. The model was later improved in 1990 and

became famous as COCOMO-II [2]. COCOMO-II however proves good in meeting the changing developing

environment requirements.

COCOMO 81 (Constructive Cost Model) though uses mathematical formulae is the most commonly used software

cost estimation model for estimating the development effort in person-months for a software project at different stages

of software development life cycle. Thus COCOMO 81 because of its simplicity is taken as a base model for software

cost estimation and thus necessitates an overview in the following section.

The COCOMO 81 model is a regression based model, used to calculate the amount of effort and the time schedule for

software projects. It is considered to be the most cited best known and the most credible model among all traditional

algorithmic models. COCOMO 81 though considered to be the most stable software cost estimation model of the time

but fails to match the development environment of the late 1990’s. So, in 1997 COCOMO II was published which

gave solution to most of the problems lying with COCOMO 81. Both of the models will be briefed in next subsections:

Basic Cocomo

It is the fundamental software cost estimation model made to estimate software development cost of projects of the

nature of small to medium size. Being simple and easy to use, this model provides quick cost estimates but this

simplicity lets its accuracy to be limited by some measure, thus this model is normally used for rough and initial

estimates of cost of software projects.

In this model, the function of program size is the value of the estimation of software development effort. Normally

the size of program is determined as thousand lines of code. The basic COCOMO model is given using the following

equation:

𝐸𝑓𝑓𝑜𝑟𝑡 (𝑃𝑒𝑟𝑠𝑜𝑛 𝑀𝑜𝑛𝑡ℎ𝑠) = 𝑎𝑏 × (𝐾𝐷𝑆𝐼)𝑏𝑏
𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑇𝑖𝑚𝑒 (𝑖𝑛 𝑀𝑜𝑛𝑡ℎ𝑠) = 𝑐𝑏 × (𝐸𝑓𝑓𝑜𝑟𝑡)𝑑𝑏

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝐾𝐷𝑆𝐼 𝐸𝑓𝑓𝑜𝑟𝑡⁄

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑡𝑎𝑓𝑓𝑖𝑛𝑔 = 𝐸𝑓𝑓𝑜𝑟𝑡 𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑇𝑖𝑚𝑒⁄

The coefficients ‘ab’, ‘bb’, ‘cb’, ‘db’ are defined per project mode and they are given in the following table:

[Bhat, 5(4): April 2018] ISSN 2348 – 8034
 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

228

Table 2: Basic COCOMO Coefficients

Software Project ab bb cb db

Organic 240 105 250 38

Semi-attached 300 112 250 35

Embedded 360 120 250 32

However, there exist so many factors of cost which are excluded by basic COCOMO. These cost factors include

Constraints interms of hardware, Capability, experience and capacity of the personnel involved in overall software

development process.

Intermediate Cocomo
The software development effort estimation using intermediate COCOMO is a function of two things namely 15

attributes of cost factors and program size. These 15 attributes are categorised into following four groups:

1. Attributes related to Software product,

2. Attributes related to Machine hardware,

3. Attributes related to People involved,

4. Attributes related to overall project.

Moreover associated with each attribute is a weight called as multiplying factor which determines the effect of attribute

involves in estimation process of software development effort.

Estimation of software development cost in this kind of COCOMO initiates by developing a nominal estimate of effort

and making use of similar basic COCOMO scaling equations. Next the nominal estimate is accustomed by putting

multipliers of effort drawn from the ratings of the software project. The ratings of the software project are regarding

15 cost drivers and every single of these attributes get a score from the range of very low to extra high. The various

multipliers of effort which are applied to ratings are given in the following table 3.3, whose product result in

calculation of Effort Adjustment Factor (EAF). The common values of EAF are from 0.9 to 1.4.

[Bhat, 5(4): April 2018] ISSN 2348 – 8034
 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

229

Table 4: Effort Multipliers in Intermediate COCOMO

Intermediate COCOMO takes the following form:

𝐸𝑓𝑓𝑜𝑟𝑡 = 𝑎𝑖 × (𝐾𝐿𝑂𝐶)𝑏𝑖 × 𝐸𝐴𝐹

Attribute

Categories
Cost Drivers

RATINGS

Very

Low

Low Nom. High Very

High

Extra

High

Product

Software

Reliability

Requirement

75 88 100 115 140 -

Application

Database Size

- 94 100 108 116 -

Product

Complexity

70 85 100 115 130 165

Hardware

Runtime

Performance

Constraints

- - 100 111 130 166

Memory

Constraints

- - 100 106 120 156

Virtual Machine

Environment

Volatility

- 87 100 115 130 -

Mandatory turn

of time

- 87 100 107 115 -

Personal

Capability of

Analyst

146 119 100 86 71 -

Applications

Experience

129 113 100 91 82 -

Software

Engineering

Capability

142 117 100 86 70 -

Experience of

Virtual Machine

121 110 100 90 - -

Programming

Language

Experience

114 107 100 95 - -

Project

Application of

Software

Engineering

Methods

124 110 100 91 82 -

Software tools

usage

124 110 100 91 83 -

Development

Schedule

Requirement

123 108 100 104 110 -

[Bhat, 5(4): April 2018] ISSN 2348 – 8034
 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

230

, where ‘E’ represents the effort in person-months,

‘KLOC’ represent the predicted lines of code of the project and

‘EAF’ defines the effort adjustment factor to be computed centred on cost drivers.

However, the use of ‘E’ in calculating ‘D’ (Development time) is done in the similar manner as in Basic COCOMO

Moreover, exponent ‘bi’ and coefficient ‘ai’ are shown below in table 3.4:

Table 3.4: Intermediate COCOMO Coefficients

Software Project ai bi ci di

Organic 320 105 250 38

Semi-attached 300 112 250 35

Embedded 280 120 250 32

Detailed Cocomo

Detailed COCOMO incorporates all characteristics of the Intermediate COCOMO with an assessment of the cost

driver's influence on individual project phases. This is done by using different efforts multipliers for each cost drivers

attribute in each phase. These multipliers are called Phase Sensitivity Effort Multipliers and these determine the

amount of effort required to complete each phase of the project.

Cocomo II
As earlier stated that COCMO 81 fails to match the development environment of the late 1990’s provides space for

COCOMO II to get published which gave solution to most of the problems lying with COCOMO 81.

COCOMO II has three models and they include:

1) Application Composition Model – This model is based on new Object Points and thus fits to projects that are

developed using modern GUI-builder tools.

2) Early Design Model – It is an Unadjusted Function Points or KSLOC based model and is used to generate rough

estimates of a project's cost and duration prior to the determination of projects entire architecture. It uses a small

set of new cost drivers, and new estimating equations.

3) Post-Architecture Model – This model is used once the overall structural design for a software project is

completed. This model is the detailed one among all the three uses function points or LOC as size estimates and

engrosses the actual development and maintenance of a software product.

COCOMO II considers17 cost drivers, used in the Post Architecture model. These cost drivers are rated on a scale

from Very Low to Extra High in the same way as they are followed in COCOMO 81. COCOMO II post architecture

model is given as:

𝐸𝑓𝑓𝑜𝑟𝑡 = 𝐴 × [𝑆𝐼𝑍𝐸]𝐵 × ∏ 𝐸𝑓𝑓𝑜𝑟𝑡 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟𝑖

17

𝑖=1

𝑤ℎ𝑒𝑟𝑒 𝐵 = 1.01 + 0.01 × ∑ 𝑆𝑐𝑎𝑙𝑒 𝐹𝑎𝑐𝑡𝑜𝑟𝑗

5

𝑗=1

In above equation, ‘A’ represents Multiplicative Constant, ‘SIZE’ represents Size of the software project measured in

terms of the selection of scale factors (SF) and is based on the rationale that they represent a significant source of

exponential variation on a project’s effort or productivity variation.

[Bhat, 5(4): April 2018] ISSN 2348 – 8034
 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

231

Table 3.5: COCOMOII- Effort Multipliers

Attribute

Category

Cost Drive

Product

Requirement of Software Reliability

Size of Database

Complexity of Product

Reusability Required

Document Match

Platform

Constraints of Execution Time

Constraints of Main Storage

Platform Volatility

Personal

Programmer & Analysts Capability

Application Experience

Platform Experience

Language & Tools Experience

Personal Continuity

Project

Modern Programming Practice Usage

Software Tools Usage

Multisite Development

Development Schedule Requirement

Security Application Classification

The following equation (i) represents the equation of effort for COCOMO II:

𝐸𝑓𝑓𝑜𝑟𝑡 𝑖𝑛 𝑝𝑒𝑟𝑠𝑜𝑛 𝑚𝑜𝑛𝑡ℎ𝑠 = 𝐴 × 𝑆𝑖𝑧𝑒𝐸 × ∏ 𝐸𝑀𝑖
17
𝑖=1 ,

where

‘Size’ represents function points or source line of code which are measured in Kilo source lines of code (KSLOC).

‘A’ is a constant and defines a factor of adjustment and depicts productivity dimension with a standard value of 2.9.

The factor ‘E’ called as scale factor is based on following five factors:

 Flexibility in Development,

 Flexibility of Architecture,

 Resolution,

 Cohesion of a team,

 Process precedentedness and their maturity.

There is an exponential impact of SF on software development projects effort. The Scale Factors perform the same

way as Effort Multipliers in contributions to Cost Factors.

[Bhat, 5(4): April 2018] ISSN 2348 – 8034
 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

232

III. CONCLUSION

The main concern of any software product client is to procure a facility that is able to meet its functional requirements,

of the required quality, and delivered within an acceptable budget and timeframe. Cost estimates prepared in the early

stages of a software development projects allow the clients to perform a cost-benefit analysis, secure funding as well

as used as a basis for cost control during project delivery. Where the software product is a commercial asset, the initial

capital investment must be balanced with the cost of maintenance and operations over the life-time of the software

product to ensure that the project remains profitable and planned returns of capital investment are achieved over an

estimated period. Decisions made at the early stages of the software development project therefore carry far-more

reaching economic consequences and can seal the financial fate of any software development organization.

IV. FUTURE SCOPE

Researchers into the development of software cost prediction systems have now recognized the fact that there are

many alternatives to algorithmic and other non-parametric of software cost estimation which may include data mining

to machine learning models. However for the effective potentiality of any of these techniques to be realized it is

important that they are brought closer to the estimation practitioner. For example, in the case of neural networks there

is a certain level of competence required before they can be deployed effectively by a practitioner as it becomes

complex with respect to their trainings and other architectural complexities to adopt them which sums to their lacking

of desired competence . So to bring this competence or to replace these with their simple alternatives without the loss

of any of their estimating power, any amount of research proving their accuracy will not encourage practitioners to

embrace them. In this research, the competence into these artificial neural network based models is brought by their

inclusion with various metaheuristic optimization algorithms like artificial bee colony, ant colony, fire fly, particle

swarm optimizations and many alike that either on their alone or their hybridisation with them or with their higher

end artificial neural network based models like functional link artificial neural networks offer a number of potential

advantages over their counterparts.

REFERENCES
1. Boehm, B.W., “Software Engineering Economics”, Prentice-Hall, Englewood Cliffs, New Jersy, 1981.

2. Boehm, B.W., “Software Cost Estimation with COCOMO II”, Prentice Hall PTR, Englewood Cliffs, New Jersy,

2000.

3. Fenton, N.E., Pleeger, S.L., “Software Metrics: A Rigorous and Practical Approach”, second ed. PWS, Boston,

MA, USA, 1997.

4. Pressman, R.S., “Software Engineering: A Practitioner’s Approach”, fourth ed. McGraw-Hill, New York, NY,

USA, 1997.

5. Gray, A.R.,. “A simulation-based comparison of empirical modelling techniques for software metric models of

development effort,” In: Proceedings of ICONIP, Sixth International Conference on Neural Information

Processing, Perth, WA, Australia, vol. 2, pp. 526–531, 1999.

[Bhat, 5(4): April 2018] ISSN 2348 – 8034
 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

233

6. Kemerer, C., “An empirical validation of software cost estimation models”. Communications of the ACM 30 (5),

416–429, 1987

7. Rubin, H., “Interactive macro-estimation of software life cycle parameters via personal computer: a technique

for improving customer/developer communication”, in Proc. Symp. on application & assessment of automated

tools for software development, IEEE, San Francisco, 1983.

8. Jones, C., “Applied Software Measurement”, McGraw Hill, 1997.

9. Jensen, R., “An Improved Macro level Software Development Resource Estimation Model”, Proceedings 5th

ISPA Conference, pp. 88-92, April 1983.

10. Freiman, F.R. and Park, R.E., “The Price software cost model”: RCA government systems division IEEE,

1979.

11. Putnam, L., “A general empirical solution to the macro software sizing and estimating problem”, IEEE

Transaction on Software Engineering, pp. 345-361, July 1978

12. Albrecht, A. J., “Measuring application development productivity”, Proceeding of the Joint SHARE, GUIDE

and IBM application development symposium, IBM Corporation, 1979.

13. Albrecht , A.J., and Gaffney, J.E., “Software Function, Source Lines of Code, and Development Effort

Prediction: A Software Science Validation,” IEEE Trans. Software Eng., vol. 9, no. 6, pp. 639-648, Nov. 1983.

14. Capers, Jones,“ Software Productivity Research” (http://www.spr.com), 1986.

http://www.spr.com/

